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Abstract—Video data is continuously increasing in personal
databases and Web repositories. To exploit such data, a prior
segmentation is often needed in order to get the objects-of-interest
to be further processed. However, the segmentation of a given
video is often not unique and indeed depends on user needs.
Personalized segmentation may be achieved using interactive
methods but only if their computational cost stays reasonable
to enable user interactivity.

We address here the problem of interactive video segmentation
and introduce a 2-step segmentation scheme: 1) offline processing
to automatically extract quasi-flat zones from video data, and
2) online processing to interactively gather quasi-flat zones and
build objects-of-interest. Our approach is able to deal with
multiple objects, robust to errors introduced by the automatic
segmentation step, and does not require to perform again the
whole segmentation process each time the user provides some
feedback.

Index Terms—Video analysis, Object segmentation, Interactive
process, Quasi-Flat Zones, Morphological approach

I. INTRODUCTION

Following the increase of textual and then image data in per-
sonal databases and Web repositories, we are currently facing
the same evolution with video data. Many video processing
schemes or related use cases require a prior segmentation in
order to get the objects-of-interest to be further processed, e.g.
video object mining [1]. However, the segmentation of a given
video is often not unique and depends on user needs. While
video segmentation is still an open and ill-defined problem,
personalized or user-based segmentation may be achieved
using for instance interactive methods. However, such methods
can only ensure user interactivity if their computational cost
stays reasonable, since the user will not accept to wait too
long between each interaction.

In this paper, we address the problem of interactive video
segmentation and introduce a new segmentation scheme,
which is based on two steps: 1) offline processing to extract
quasi-flat zones from video data, and 2) online processing
to interactively gather quasi-flat zones and build objects-of-
interest. This paper is organized as follows: we first recall
some recent interactive video segmentation methods in order
to underline our contribution. We then deal with a recent mor-
phological segmentation tool, called segmentation into Quasi-
Flat Zones (QFZ), and provide its definitions for both the well-

established image case and the more recently addressed video
case [2]. The next sections are dedicated to our interactive
segmentation method based on QFZ and its evaluation and
comparison against existing approaches. Finally, we conclude
and present some perspectives.

II. INTERACTIVE VIDEO SEGMENTATION

Interactive video segmentation means that a user is involved
to guide the segmentation process. It can be easily achieved by
allowing the user to change segmentation parameter settings
and to see the subsequent results, but this kind of user
interactivity is far from being intuitive. There are mainly two
intuitive schemes for interactive video segmentation: either the
user provides a visual input (i.e., she draws markers) to guide
the segmentation process, or she is offered a way to correct
segmentation results built from an automatic process.

Price et al. [3] propose a correction method based on
automatic video segmentation obtained through graph-cut and
different features computed from tiny regions returned by a
watershed segmentation used as a preprocessing step. The
segmentation is computed frame by frame. The user can
correct the result of each frame, and its feedback is also prop-
agated to the next frame following a feature weighting process
within the graph-cut scheme. Flores and Lotufo [4] design a
method based on the marker-based watershed involving both
marker drawing and correction. The user draws markers on the
first frame to guide the watershed process. The result of the
watershed segmentation is then used to define new markers
to be used in the next frame according to inter-frame motion.
The user can correct the markers in any frame: it will result
in a new segmentation of the current frame and an updating
of the segmentation results of the following frames. Bai and
Sapiro [5] combine markers and geodesic distance to segment
a video as a 3D image. Each pixel is assigned to the closest
marker according to its geodesic distance to markers, and a
weighted gradient is used to compute the markers. Zhi and
Ji [6] combine watershed segmentation and region merging.
While the former is used as a preprocessing step, the latter
relies on a seeded region growing algorithm and is applied on
the region adjacency graph of the initial watershed segmenta-
tion. The result can be corrected by assigning manually each
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Fig. 1. Video Quasi-Flat Zones production by separated processing of spatial and temporal dimensions.

incorrect region to foreground or background.
While these methods provide good results, they suffer from

some limitations: [4], [5], [6] are only able to deal with a
single main object vs. its background; [3], [4], [6] are frame-
based approaches, and the user is then expected to check each
frame of the video sequence; [3], [6] rely on an automatic
preprocessing step to provide an initial segmentation result
which cannot be further corrected; finally, user correction
in [4], [5] requires to perform again the whole segmentation
process.

In order to overcome these limitations and to propose an
efficient interactive video segmentation method, we suggest
to first build a spatio-temporal oversegmentation result, and
then merge the different regions according to user markers.
Segmentation correction is achieved by editing the markers
and performing again only the merging step and not the whole
segmentation process. If irrelevant regions are found within
the initial oversegmentation result, the segmentation process
is locally recomputed according to user feedback. The initial
oversegmentation result is made of Quasi-Flat Zones (QFZ)
which have interesting frontiers and may be considered as
puzzle pieces [7] to be further gathered into objects. We
present this tool in the next section.

III. QUASI-FLAT ZONES

A. Still Image QFZ

Flat zones [8] have been studied within the field of Mathe-
matical Morphology and are seen as elements with interesting
properties. Indeed, a flat zone is defined as a connected set
of pixels having the same value. Since object frontiers in
digital images are mostly located between pixels of different
values, object frontiers are expected to be included in frontiers
between flat zones (apart if the image resolution is insufficient,
which will not be considered here). However, flat-zones are
often only a few pixels wide so the resulting partition is

an extreme oversegmentation and is hardly exploitable. Less
constrained definitions have thus been proposed, leading for
instance to the Quasi-Flat Zones and more precisely the α-CC
(see [7] for a survey on QFZ).

The α-CC of a pixel p is defined as the connected set
of pixels which can be reached through (at least) one path
verifying the following condition: the difference between
values of successive pixels within the path is less or equal
to a given parameter α. Let us observe that flat zones are a
particular case of α-CC with α = 0. But, contrary to flat
zones, segmenting an image into α-CC with α > 0 may
result in an undersegmentation phenomenon. If α is set too
high, it will lead to a so-called chaining effect, which may
even result on a single QFZ for the whole image. In order
to counter this problem, several new QFZ definitions based
on α-CC have been elaborated (see [7] for more details).
These definitions have been subsequently unified by Soille and
Grazzini [9], [10], who propose a theoretical framework called
logical predicate connectivity.

In this new framework, a QFZ (noted (P1, . . . , Pn)-CC
here) is expected to satisfy all the n logical predicates Pi.
We will denote by Pi(S) the fact that a predicate Pi is
valid over a set S. Various predicates may be involved, such
as the global range predicate which is true if and only if
the difference between minimal and maximal pixel values
within a QFZ is less or equal to a given threshold ω. The
(P1, . . . , Pn)-CC thus consists in finding, for each pixel p,
the largest α-CC which satisfies all the predicates. Moreover,
since the following property holds:

∀α′ ≤ α, α′-CC(p) ⊆ α-CC(p) (1)

an iterative computation scheme may be involved. Indeed,
when predicates are not verified for a given value of α, we only
need to decrement α and check once again if the predicates
are verified. This loop is repeated until finding the maximal



value of α for which all the predicates are verified:

(P1, . . . , Pn)-CC(p) =
∨{

α′-CC(p) |
∀k ∈ {1, . . . , n}, ∀α” ≤ α′, ∀q ∈ α′-CC(p),

Pk (α
′-CC(p)) and Pk (α

′′-CC(q))
}

(2)

Some clues to define QFZ in multivariate images have
also been given by Soille [7], where α is assumed to be a
vector with the same value in all components. Thus α may
be easily ordered through a total ordering (e.g., decrementing
α = (3, 3, 3) gives α = (2, 2, 2)). Global range predicate is
processed similarly, and is true only if it is verified marginally
for all bands.

QFZ are well defined for still images. Their extension to
video is not straightforward and implies some new segmen-
tation schemes. We have already addressed this problem [2]
and recall this previous work in the next section.

B. Spatio-temporal QFZ

Extending the concept of QFZ to video data may be
achieved by several ways. Probably the easiest one consists
in a 3D straight extension, where a spatio-temporal neigh-
bourhood is considered instead of a spatial one. However,
spatial and temporal dimensions are intrinsically different and
results provided by such a trivial 3D approach may not be
relevant. We rather consider here a 2D + t method which
successively (and no more jointly) deal with the spatial and
temporal dimensions. First, we compute the QFZ considering
only the spatial dimension, i.e. on a frame by frame basis. QFZ
are then considered as elementary units, represented within
a graph structure where each QFZ or node is valued (e.g.,
using the QFZ mean value). The temporal dimension is then
studied to connect QFZ from successive frames which have
overlapping spatial coordinates. The graph structure is updated
by adding edges for each connection between QFZ. Edges are
also valued by the distance (e.g., euclidean distance) between
their associated nodes. In this 2D + t segmentation scheme,
the QFZ are defined within the graph as the largest connected
components of nodes whose connecting edges have a value
less or equal to α and which do not violate any predicate.
This video extension of QFZ is presented in figure 1. Let us
observe that we can apply this process by inverting spatial and
temporal dimensions, i.e., starting by identifying QFZ using a
temporal neighbourhood only, and then linking nodes by edges
considering a spatial neighbourhood. Experimental results
performed by the authors have demonstrated a superiority of
2D + t and t + 2D approaches over the 3D approach. Thus
these oversegmentation schemes will be used further in this
paper.

While our interactive segmentation scheme relies on an
oversegmentation result provided by the computation of the
QFZ, the oversegmentation effect should not be too important
to make the subsequent merging step computationally effi-
cient and to ensure user interactivity. Thus, we also apply a
filtering process to reduce oversegmentation induced by the
QFZ approach. In still images, QFZ filtering often consists in

keeping only QFZ having a minimal spatial area. We extend
this principle to video data by considering the average spatial
area of the QFZ, computed as the ratio between the spatio-
temporal volume and the length of the QFZ (i.e., the ratio
between the number of pixels within the QFZ and the number
of successive frames where the QFZ appears). All QFZ with
a average spatial area below the filtering threshold are merged
with the neighbouring QFZ having the most similar mean
color. Let us note that this criterion was shown to provide
better results than a straight extension of 2D area to 3D
volume.

IV. INTERACTIVE SEGMENTATION SCHEME

As indicated in the first sections, we aim in this paper to
introduce a new interactive video segmentation method able
to overcome drawbacks encountered by existing works (see
Sec. II). User interactivity is only possible if the segmen-
tation process requires a relatively low computational cost.
Nevertheless, building a meaningful video segmentation needs
to process a huge data volume (i.e., duration × framerate
× image width × image height pixels). Thus we propose
here a two-step segmentation approach, where the first step is
performed offline and does not need user intervention, while
the second step is online and interactive. This approach is
presented in figure 2.

A. Offline Part

The offline part consists in building a first segmentation
into QFZ from the whole set of pixels contained in the video
sequence. QFZ are computed using the scheme presented in
Sec. III. More precisely, we consider the (P1, . . . , Pn)-CC
definition with the 2D + t extension to video data. QFZ are
then represented through a spatio-temporal region adjacency
graph (RAG). These operations are the most computationally
intensive steps of our method, and are thus performed offline
(i.e., before user interactivity).

B. Online Part

The online part relies on the user to refine interactively
the initial QFZ oversegmentation and build a user-based or
personalized segmentation. First, the user is asked to edit and
provide markers to the segmentation refinement process. To
do so, she is expected to draw scribbles over both objects-of-
interest and background. Each scribble is assigned to a label,
and scribbles related to the same label are considered as a
single marker even if they are not spatiotemporally connected.
By this way, scribbles may be drawn in different frames.

Contrary to existing works, the initial segmentation (result-
ing here from the offline step) may be corrected by the user
if needed. This occurs when a given QFZ is overlayed by
multiple user markers. In this case, either the QFZ or the user
scribbles are irrelevant. We assume here that the user does not
make any mistake while drawing scribbles, and that the ill-
segmented QFZ needs to be segmented again according to user
scribbles. This is achieved using a marker-based watershed
based on user markers. The spatio-temporal RAG is then
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Fig. 2. Interactive marker-based QFZ framework.

updated according to this new segmentation. While this user-
based correction of initial segmentation increases the overseg-
mentation effect and requires an additional computational cost,
it also improves the quality of QFZ and related frontiers from
a user point-of-view.

The initial or corrected RAG is then interactively segmented
using an algorithm inspired from the Seeded Region Growing
(SRG) approach. Each interaction is a sequence of the follow-
ing operations:

1) Nodes representing QFZ overlayed by user markers are
labelled as merged: they are considered as seeds in the
SRG paradigm. All the other RAG nodes are labelled as
unmerged.

2) Edges between merged and unmerged nodes are valued
by the distance between node attributes (e.g., mean
color).

3) Edge with the least value is removed and corresponding
merged and unmerged nodes are merged. The modified
RAG is then corrected by updating edge values of the
new merged node. This merging process is iterated until
all unmerged nodes have been incorporated into merged
ones.

4) Nodes related to the same marker are merged in order
to produce a node per user marker (instead of a node
per QFZ overlayed by a user marker).

5) The graph segmentation is then mapped back to the
video and displayed to the user. If she is not satisfied
by the result, she may correct the existing markers,
add new markers or remove existing ones. The RAG
is reinitialized and the iterative process is repeated until
user validation.

V. RESULTS AND DISCUSSION

To illustrate the successive steps of our method, we consider
the sequence carphone (176 × 144 pixels on 381 frames)
and provided a sample corresponding to the frame 186 in
Fig. 3. We consider here the 2D + t video extension and
following parameters: α = ω = 20, mean area = 10. For
the sake of clarity, still images are given but they are indeed
samples from a spatio-temporal segmentation process. The
initial QFZ segmentation (b) results in 35 560 spatio-temporal
regions (while the original video (a) contains 9 656 064 pixels).
The user is expected to draw a marker for each connected
region-of-interest, see (c) for an example of markers. The
result given in (d) has been obtained by marking only a few
frames within the video. Indeed, users are advised to mark
only the median frame in a first time before computing a
first segmentation result. Then this result may be corrected by
adding/modifying/removing markers on any frame. The final
segmentation is here composed of three objects-of-interest: a
man, the inside of the car and the outside.

Table I illustrates the computation time required to segment
the sequence carphone by the 2D+ t approach with different
(α, ω) parameters. The offline time measures QFZ computation
and RAG creation steps, while the online time measures one
user interaction, i.e. a single iteration of the graph refinement



a b

c d
Fig. 3. Different steps on frame 186: a) original frame, b) initial QFZ
segmentation, c) scribbled markers, d) final segmentation.

step for the whole video sequence (a frame-related measure is
also provided). Here the correction of the initial segmentation
has not been considered since it only occurs when several
markers overlay a single QFZ, which is quite rare in our case
since the QFZ build an oversegmentation. Let us observe how-
ever that for high values of (α, ω), such a correction may occur
more frequently. Nevertheless, in this case online computation
time is lowered since the number of QFZ (and subsequently
the graph size) is reduced. We also provide in this table a
comparison with the watershed from propagated markers [4]
and with the standard marker-based watershed [11] extended to
video data (considered here as a 3D volume). The comparison
element is the online time which measures the efficiency of
the interactive process (i.e., how long a user has to wait before
being informed that she has to provide a new feedback to the
segmentation process?). Our method performs far more better
than these two methods thanks to its offline preprocessing
step. Indeed, when other methods need tens of seconds for
the online processing, our method needs less than a second.
Though the marker-based QFZ needs more offline processing
time than other methods (above two times the needs of [4]),
it is totally compensated by the online processing efficiency
which is more important in an interactive context.

Besides, we also need to evaluate the precision of the results
produced by our method vs. those of other similar works. To
do so, we compare our marker-based QFZ to marker-based
watershed (MBWS) and seeded region growing (SRG). We
choose these two methods because we use MBWS for ill-
segmented region refinement and we apply a kind of SRG on
our spatio-temporal RAG video representation to obtain the
personalized segmentation. The goal of this comparison is to
show that our approach, which relies on these basic methods,
gives better results than the straight application of them. To
perform the precision evaluation, we use an extract of the

Method α, ω
Computing time in s

Offline Online (per frame)

MBQFZ 2D+t

10 44 0.52 (1.3x10−3)
20 35 0.55 (1.4x10−3)
30 38 0.50 (1.3x10−3)
40 43 0.36 (9.6x10−4)
50 46 0.32 (8.6x10−4)

MBQFZ t+2D

10 44 0.10 (2.8x10−4)
20 32 0.12 (3.2x10−4)
30 26 0.11 (3.0x10−4)
40 26 0.10 (2.8x10−4)
50 25 0.09 (2.6x10−4)

WSFPM – 19 132 (0.35)
MBWS – 32 27 (0.07)

TABLE I
EFFICIENCY EVALUATION AND COMPARISON OF INTERACTIVE VIDEO
SEGMENTATION OF THE carphone SEQUENCE: COMPUTATION TIME (IN

SECONDS) REQUIRED BY OUR MARKER-BASED QFZ (MBQFZ)
ACCORDING TO DIFFERENT α AND ω SETTINGS AND TWO OTHER

APPROACHES, WATERSHED FROM PROPAGATED MARKERS [4] (WSFPM),
AND STANDARD MARKER-BASED WATERSHED (MBWS).

sequence carphone of 80 frames for which we have a ground
truth (let us notice that general-purpose spatio-temporal seg-
mentation datasets and benchmarks are still missing). We
evaluate the results using the mean value of Jaccard-Index
which has been used in image segmentation evaluation [12].
Its values are in [0,1], 1 represents a perfect matching between
segmentation and reference. We compute it independently for
each class and average the result to obtain a global criterion.
The different results are obtained by markers set only on
the median frame. Results are shown in table II and show
that both MBQFZ video approaches gives better results than
SRG. We can conclude that our method benefits from applying
SRG on QFZ instead of relying on a direct application of the
SRG algorithm on video pixels. Moreover, we can observe
that our method is able to produce results better or close to
those obtained with the marker-based watershed. Let us also
note that these results are obtained by different combinations
of parameters α,ω and mean area threshold, thus showing a
relative robustness of our method to parameter settings. But
selecting best parameters for this video segmentation task is
still an open problem. While our interactive method is based
on the principle of QFZ which is basically an homogeneous
region extraction operator, we could expect some difficulties to
segment highly textured objects. In practice, as it is illustrated
by the segmentation of the outside of the car, our method is
able to extract textured object without marking all the different
segments of the textured area. This video also shows important
motion from both the man and the outside of the car. Even with
this motion, our method is able to extract the object marked by
the user while not using motion information. This is possible
because of the overlapping spatial definition of each object
in successive frames. In the case of very fast objects (e.g., a
soccer ball) with no spatial overlapping in successive frames,
our method will need a motion compensation step to be able
to correctly segment these types of object.

From these few preliminary experiments, we have observed



Method (α, ω) Area threshold Mean Jaccard-Index

MBQFZ 2D+t
30 10 0.905
50 50 0.910
90 50 0.908

MBQFZ t+2D
20 60 0.928
40 100 0.925
100 70 0.919

MBWS - - 0.897
SRG - - 0.548

TABLE II
PRECISION EVALUATION AND COMPARISON OF VIDEO SEGMENTATION OF

THE carphone SEQUENCE: PRECISION IS EVALUATED BY THE MEAN
JACCARD-INDEX OBTAINED FOR THE THREE OBJECTS (MAN, INSIDE,

OUTSIDE), MARKERS ARE SET ONLY ON THE MEDIAN FRAME.
COMPARISON IS MADE ON RESULTS OBTAINED BY MARKER-BASED QFZ

(MBQFZ) ACCORDING TO DIFFERENT α,ω AND AREA THRESHOLD
SETTINGS AND THE RESULTS RETURNED BY THE TWO APPROACHES,
SEEDED REGION GROWING (SRG), AND STANDARD MARKER-BASED

WATERSHED (MBWS).

that our method provides promising results. In fact, it pro-
duces results close to marker-based watershed but requires
less online computation time allowing better interaction. It
now requires to be more deeply evaluated using a standard
benchmark for interactive video segmentation, but we face the
lack of such benchmark in the community. Since our current
implementation is not optimized yet, some improvements may
still be brought to offer a better efficiency (both within the
offline part which is not so efficient, and within the online
part to offer an even more interactive experience for the end-
user). The few experiments presented in this section have
been performed using a Java image processing framework
developed in our laboratory and run on a i7-720QM processor
(1.6 GHz) PC.

VI. CONCLUSION

In this paper, we have addressed the problem of interactive
video segmentation. We have introduced a two-step approach
where most of the computational effort is first made offline
to produce an oversegmentation of the video sequence, while
the online interactive step involves user feedback to efficiently
return objects-of-interest. Offline segmentation is achieved by
computing spatio-temporal quasi-flat zones from the video
data and by building a spatio-temporal region adjacency graph.
Online process is performed through a marker-based approach
where the user draws scribbles over each object-of-interest.
User feedback introduced during this online process may even
result in a refinement of the initial oversegmentation result.

Future works will focus on the computational optimization
of the method in order to demonstrate the relevance of the
proposed interactive scheme with high-resolution data. Paral-
lelization would help to take advantage of current multi-core
processors. Besides, refinement process consisting in online
QFZ segmentation needs also to be optimized. Furthermore,
we plan to compute and integrate motion information within
the QFZ graph in order to improve the merging process. Fi-
nally, we have to perform deeper evaluations and comparisons
with the state-of-the-art approaches by considering several

criteria such as the qualitative evaluation of the segmentation
result (which needs a ground truth to be provided) and the
user-time (or number of interactions) needed to achieve this
result.
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