
TRANSACTIONS ON IMAGE PROCESSING 1

Tree leaves extraction in natural images:

Comparative study of pre-processing tools

and segmentation methods
Manuel Grand-Brochier, Antoine Vacavant, Guillaume Cerutti, Camille Kurtz, Jonathan Weber, Laure Tougne

Abstract—In this paper, we propose a comparative study of
various segmentation methods applied to the extraction of tree
leaves from natural images. This study follows the design of
a mobile application, developed by Cerutti et al. (published in
ReVeS Participation - Tree Species Classification Using Random
Forests and Botanical Features. CLEF 2012), to highlight the
impact of the choices made for segmentation aspects. All the tests
are based on a database of 232 images of tree leaves depicted
on natural background from smartphones acquisitions. We also
propose to study the improvements, in terms of performance,
by using pre-processing tools such as the interaction between
the user and the application through an input stroke, as well
as the use of color distance maps. The results presented in this
paper shows that the method developed by Cerutti et al. (denoted
Guided Active Contour), obtains the best score for almost all
observation criteria. Finally we detail our online benchmark
composed of 14 unsupervised methods and 6 supervised ones.

Index Terms—Tree Leaves Segmentation, Guided Active Con-
tour, Comparative Study, Distance Map, Pre-Processing Tools.

I. CONTEXT AND MOTIVATION

In the context of the ReVeS Project (ANR-10-CORD-005),

we have developed a mobile application, called Folia, and

freely accessible on AppStorer, designed to identify tree

species, based on the analysis of the shape of their leaves.

One of the key steps of this application lies in the capacity and

reliability of the extraction of the leaf in the image taken by

the user. In response to a growing need to extract information

from an image, for applications such as object recognition,

video surveillance or assisted surgery in medical application,

creating or optimizing segmentation tools still represents a real

challenge. Since the early 70s and the emergence of computer

science, many scientific and industrial researches have created

various segmentation methods based on thresholds, non-linear

modeling tools, clustering algorithms, or iterative deformations

for example. It therefore becomes increasingly difficult to
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determine which method fits best the needs of the user for a

given application. The evaluation of segmentation algorithms

is therefore an important element when choosing a method, as

shown in recent articles [Mart01, Vojo13, Khan13, Soar13].

In order to analyze and validate choices opted in our appli-

cation, we present in this article a comparative study of various

segmentation methods. The aim is to highlight the performance

of Guided Active Contour, a new segmentation approach

developed by Cerutti et al. [Ceru13], and the usefulness of

two pre-processing tools: the color distance map and the input

stroke, on all analyzed methods. All tests proposed in this

article focus on the extraction of tree leaves, however, it can

be easily extended to other contexts of extraction of objects

in a natural or complex environment.

After the state of the art (Section II), we detail the imple-

mentation and the tools, composing our benchmark, used for

our comparative study in Section III. Section IV is dedicated

to the overall results, their interpretations and various illustra-

tions. The conclusion is preceded by a brief presentation of

our web-application presenting our benchmark in Section V.

II. STATE OF THE ART

There exists in the literature a variety of segmentation

methods. We propose to focus on main ones, which we used

throughout our comparative study. The first edge segmentation

methods have appeared in the 70s and they were based

on thresholding gradients or histograms [Otsu79, Marr80,

Wang84, Cann86]. These methods rely on the reduction of

a grayscale image into a binary image and for some, on

the assumption that it contains only two classes of pixels.

The aim is to determine an optimal threshold to separate

foreground and background classes. Subsequently, Kass et al.

[Kass87] introduced in 1987 the active contour (or snakes),

aimed to deform an initial contour in order to better define

the edge of the object to segment. Then, variations have been

proposed, based on parametric models [Zimm02, Chan01] or

coupled with tools such as B-splines [Brig00] for example.

Other methods are based on clustering of regions, in order to

isolate each object in the image. We can cite Split & Merge

and MeanShift approaches [Horo74, Chen95, Coma02, Li10].

More recently, various improvements have been proposed

[Lync06, Horv06, Kurt12]. In 1989, Greig et al. [Grei89]

publish a method of image analysis based on the theory of

graphcuts. The use of graphs was taken [Boyk01, Roth04,

Felz04] to produce a segmentation based on region growing.
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By using the analogy between image and topographic relief,

Beucher et al. [Beuc79], and more recently Salman [Salm06],

have proposed approaches based on watershed. Improvements

have recently been made by Couprie et al. [Coup09] to opti-

mize the performance of watershed and diversify its use. New

approaches, emerging from ten years, are based on intelligent

clustering of pixels. These superpixels methods are presented

in [Acha12] and are quantitatively compared (in particular

[Jian00], [Veda08] and [Levi09]) to highlight the performance

of the SLIC (Simple Linear Iterative Clustering) approach.

Based on these results, this method has been included, for

example, in a segmentation tool of cellular structure [Lucc10],

in medical imaging.

Nowadays, many segmentation methods exist and according

to the specific use, it is difficult to choose between such

methods. Moreover, optimizing their parameters is often a

real challenge. To obtain better results, some authors proposed

to add pre-processing steps to the segmentation workflow. In

this context, Weber et al. proposed various works such as

[Webe11], highlighting a segmentation technique based on

quasi-flat zones. The novelty lies in the use of morphological

tools, guided by the user, which apply the segmentation

process on a pre-processed image (i.e. an over-segmentation

of the image in quasi-flat zones). In our comparative study,

we focus both on the segmentation of tree leaves and on

adding initialization tools such as an input stroke or a distance

map. Concerning the segmentation of tree leaves, research is

emerging from the past fifteen years. The existing methods

are first based on analysis on white background [Kuma12,

Vall12], and on the use of pairs of images in order to apply

a background extraction process [Teng11]. Thereafter some

method of segmentation of tree leaves are oriented towards

the analysis on natural background based on a single image

[Neto06, Casa12, Yani14]. In order to propose an original

method, Cerutti et al. introduced in [Ceru13] the Guided

Active Contour method (denoted by GAC), dedicated to the

segmentation of tree leaves on natural background. Regarding

the initialization tools, the use of new technologies such

as smartphones or touch screen, allows the user to interact

with the image to provide additional high-level informations

through input strokes. Another optimization is based on the

choice of a color distance map measuring the similarity of

the pixels in the image to the colors of the leaf, and used

to enhance the contours and identify the various components

of the image. The latter can be based on Gaussian, linear

regression, geodesic distance or local mean for example. We

can also cite an approach based on minimum barrier distance

calculation [Kars12, Stra13]. The latter is notably used since

2012 in an application of interactive segmentation applied to

medical imaging [Malm12].

III. SETTING UP OUR STUDY

In order to provide a detailed comparative study, we rely

on the tree leaves database and a set of observation criteria

extracted from the literature. The various optimization possi-

bilities are characterized by the study of pre-processing tools,

based for its part on the use of color distance maps and input

stroke.

A. Databases

Our tree leaves database, presented in [Gran13] and illus-

trated in Figure 1, is composed of 232 natural images of tree

leaves 1 with ground truth that we have defined manually.

These images are photographs taken from the Pl@ntLeaves

database [Goëa11]. They are simple or palmately lobed leaves

on natural background. As it can be seen in Figure 1 this

Fig. 1: Sample images from the database with colorimetry, illumina-
tion problems or defects.

database contains leaves in natural conditions with colorimetry

changes, illumination problems, as well as defects.

B. Methods studied

We propose in our study a comparison of fourteen seg-

mentation methods. We tested traditional approaches, such

as: Thresholding [Otsu79], MeanShift [Chen95, Coma02],

Pyramidal MeanShift [Li10], Graphcut [Boyk01], Watershed

[Beuc93], Snakes [Chan01], B-splines Snake [Brig00], Grab-

cut [Roth04] and Felzenszwalb [Felz04], whose parameters

and configurations are those described in their respective

article. To which are added five new approaches that are

detailled here in after.

SLIC [Acha12] is a superpixel approach based on a cluster-

ing of pixels and an user initialisation (in particular the number

of superpixels), to extract segmented area. Figure 2 illustrate

this method and the segmentation resulting. The selection of

Fig. 2: Example of segmentation obtained with SLIC algorithm. Left
to right: initial image, SLIC with 200 superpixels, clusters selection,
final segmentation.

clusters is based on the iterative analysis of nearest neighbors

to keep those with similar characteristics and exclude others.

1http://liris.univ-lyon2.fr/reves/content/fr/bases.php
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For all results presented with this approach, we studied a

number of superpixels ranging from 100 to 300 (as mentioned

by the author), to obtain for each image the best segmentation.

Kurtz’s algorithm [Kurt12] is based on a hierarchical mul-

tiresolution top-down strategy. This algorithm starts by cluster-

ing the image content into a collection of coarse image patches

sharing similar image color characteristics. Each one of this

patch is then represented as a hierarchical structure using a

Binary Partition Tree (BPT) derived from the Mathematical

Morphology theory. Consequently, the image content can be

considered as a forest of BPTs. Once this forest has been

built, the next step of the algorithm consists of progressively

segmenting each one of these trees. To this end, each cluster

of BPTs is pruned (using an interactive cutting-tree strategy)

producing a global segmentation of the image.

Weber’s algorithm [Webe11] is based on two steps. The

particularity of this approach is that most of the computational

effort is first made during on offline step to produce an over-

segmentation of the image. Then the online interactive step

involves user feedback to efficiently return objects of interest.

Offline segmentation is achieved by computing quasi-flat zones

from the image data. Online process is performed through a

marker-based approach where the user draws scribbles over

tree leaf. User feedback introduced during this online process

may even result in a refinement of the initial oversegmentation.

Power Watershed [Coup09] is based on the principle of

energy minimization of some methods such as Graphcut for

example. By introducing this step in a Watershed approach

Couprie et al. obtained a more accurate analysis of the neigh-

borhood of the points, which is used to refine the segmentation.

The Power Watershed leads to a multilabel, scale and contrast

invariant, unique global optimum obtained in practice in quasi-

linear time.

Finally, as detailed in [Ceru13], GAC consist of a two-step

segmentation process, illustrate in Figure 3. First optimizing

Fig. 3: Illustration of GAC segmentation process.

iteratively a polygonal model (designed to account for the

global shape of the leaf) to the content of the image. Starting

from this estimation, active contours then evolve, guided

by a general energy term (denoted by E), for a contour Γ
delineating a region Ω(Γ), which can be expressed as:

E(Γ) = αELea f (Γ)+βEShape(Γ)+ γEGradient(Γ)

+δESmooth(Γ)−ωEBalloon(Γ), (1)

with ELea f the dissimilarity energy based on the color distance

map, EShape the shape energy that ”guides” the contour by

constraining it to remain close to the polygon, EGradient the

gradient energy to fit the actual leaf border, ESmooth the

smoothing energy, EBalloon the balloon energy and α, β, γ,

δ, ω are weighting values in R.

Our study is therefore based on approaches with different

possibilities of uses (see Table I). One method requires a

continuous user interaction, and thirteen approaches can be

used automatically (usually with input numerical parameters).

To do this, for traditional interactive methods such as Graphcut

or Grabcut, we set up automatically the target at the center of

the image and the background in the corner. Finally, six of

them can include an initial guiding shape in their pipeline.

TABLE I: Summary of methods studied and their possible uses
(Automatic, with Graphical initialisation, with User interaction).

ref. Automatic Graphical User

init. interact.

Thresholding [Otsu79] X

MeanShift [Coma02] X

Pyr. MeanShift [Li10] X

Graphcut [Boyk01] X

Watershed [Beuc93] X

Snakes [Chan01] X X

B-splines Snake [Brig00] X X

Grabcut [Roth04] X X

Felzenszwalb [Felz04] X

Kurtz [Kurt12] X

Weber [Webe11] X X

Power Watershed [Coup09] X

SLIC [Acha12] X X

GAC [Ceru13] X X

C. Observation criteria

To analyse the quality of the segmentation result (accuracy,

information extracted, etc), we opt for nine well known

observation criteria. The Precision, the Recall and the Dice

index (or F-measure), characterize the overall quality of the

segmentation area. The Manhattan (or Matching) index allows

to study the similarity rate of the entire image. The Jaccard

(or Tanimoto) index, studies the similarity rate between two

segmentation areas. These first five criteria are based on

statistical tests of true or false positives (respectively denoted

by TP and FP) and true or false negatives (respectively denoted

by TN and FN). The Precision and the Recall are defined by:

Precision =
T P

T P+FP
and Recall =

T P

T P+FN
; (2)

the Dice index by:

Dice index = 2.0×
Precision×Recall

Precision+Recall
; (3)

the Manhattan index by:

Manhattan index =
T P+T N

T P+FP+T N +FN
, (4)

and the Jaccard index by:

Jaccard index =
T P

T P+FP+FN
. (5)

The other criteria are: the Hamming measure that calculates

the number of disparities between two images, and is defined

by:

MH(I1 ⇒ I2) = n− ∑
R2∈I2

max
R1∈I1

|R2∩R1| , (6)
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where R1 and R2 are segmentation areas in images I1 and I2,

respectively, and n is the number of pixels of one image; the

Hausdorff distance, which can be defined by the maximum

gap between two segmentation areas:

dH(R1,R2) = max{ sup
y∈R2

inf
x∈R1

δ(x,y), sup
x∈R1

inf
y∈R2

δ(x,y)} , (7)

in a metric space (E,δ); the mean absolute distance (denoted

by MAD) that defines the average deviation of contour points

between the ground truth (R1) and segmented area (R2),

defined by:

MAD(R1,R2) =
1

M

M

∑
m=1

(‖xm− ym‖,xm ∈ R1,ym ∈ R2) , (8)

where xm and ym are contour points of R1 and R2 respectively.

The contour points xm are determined by observing the in-

tensity changes in the neighborhood of each pixel of the first

image and we then map each of them with its nearest neighbor

among all the contour points ym from the second image; and

the structural similarity (denoted by SSIM [Wang04]) for the

structural information extracted, defined by:

SSIM(R1,R2) =
(2m1m2 + k1)(2cov1,2 + k2)

(m2
1 +m2

2 + k1)(σ
2
1 +σ2

2 + k2)
, (9)

m1 and m2 are the average of R1 and R2, σ2
1 and σ2

2 are the

variance, cov1,2 is the covariance, k1 and k2 are two coefficient

proportional to the dynamic range of the pixel values.

D. Details of color distance maps

The use of the color distance map allows to enhance the

image contrast and therefore the contours. This process is

based on two assumptions: the object is in the center of the

image and the background is in the corners. This process

is characterized by five seedpoints respectively one for the

center and four for the corners. The principle is to study

the colors and variations around these points. Figure 4 shows

three types of distance map: the first based on coupling global

distance and local color [Ceru13] (denoted by GLC), only

using one seedpoint (in the center); the second based on a

geodesic distance (denoted by GD), using the five seedpoints;

and the last one based on an approach of minimum barrier

distance [Kars12, Stra13] (denoted by MBD), using a single

seedpoint. The tool proposed by Cerutti et al. [Ceru13] is

based on a model of global linear regression and on a local

adaptive mean color with an evidence-based combination of

them. This choice is justified by the fact that leaves may

contain various colors, whose average deviation from the

inside of the leave is greater than the deviation between the

leave and the background. In Figure 5 we propose to study

the number of images (as a percentage of the number of

images constituting the database) obtained at a given Jaccard

index. Our comparative analysis is based on four models: one

Gaussian, a linear regression, a local mean and a combination

of linear regression/local mean. We can observe that the tool

proposed by Cerutti et al. allows us to obtain the best Jaccard

index for 100% of the images (black line in Figure 5). The

Fig. 4: Examples of color distance maps: (left to right) initial image,
coupling global distance/local color (GLC), geodesic distance (GD),
minimum barrier distance (MBD).

Fig. 5: Rate of images obtained (y-axis, in %) depending on the value
of Jaccard index (x-axis, in %), for four color distance estimations.

dissimilarity map is defined by the distance of every pixel x

in the image to the color model:

dLinReg(x) = ‖(Lx,ax,bx)− (Lx, â(Lx), b̂(Lx))‖2 , (10)

in the L*a*b colorspace, where â(Lx) = a0+a1Lx and b̂(Lx) =
b0+b1Lx are two affine fonctions defining the brightness value

estimated. The local adaptative mean color is estimated using

a propagation scheme, that updates the local estimated color

by considering the 8 nearest neighbours (denoted by N8) of

pixel x and is defined by:

∀y ∈ N8(x),(L̄y, āy, b̄y) =

{

αB+(1−α)C, if ‖B−C‖2 < θ

C, otherwise
,

(11)

with B = (Lx,ax,bx), C = (L̄x, āx, b̄x) and k̄ is the average

value of k in the neighborhood. The final map is based on the

combination of the elements detailed above, according to the

theory of evidence defined by Shafer [Shaf76]. This algorithm

uses the basic belief assignments for each pixel to determine

its belonging with a minimum degree of uncertainty.

The two other color distance maps are defined on subsets

space of the image points. The principle lies in estimating the

shortest distance between a point of the object to be extracted

and the background. In [Stra13], the barrier cost function of a

path is the difference of the maximum and minimum intensity

along the path. The minimum barrier distance between two

points is defined by the barrier cost of the cheapest path with
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TABLE II: Average Precision, Recall, Dice index, Manhattan index, Jaccard index, Hamming measure, Hausdorff distance, MAD and SSIM
of 232 images. Thirteen segmentation methods are presented, with NO input stroke and with NO color distance map.

ref. Precision Recall Dice Manhattan Jaccard Hamming Hausdorff MAD SSIM

Thresholding [Otsu79] 71.72% 84.53% 0.751 81.27% 63.54% 12969.5 80.15 6.69 0.67

MeanShift [Coma02] 71.88% 86.54% 0.759 81.23% 64.53% 12624.8 76.57 6.31 0.70

Pyr. MeanShift [Li10] 72.30% 87.28% 0.763 81.05% 65.06% 13021.5 67.38 5.77 0.73

Graphcut [Boyk01] 69.78% 82.93% 0.727 78.91% 60.69% 14435.8 81.29 6.81 0.63

Watershed [Beuc93] 70.31% 85.65% 0.749 80.14% 63.59% 13594.8 74.93 6.13 0.70

Snakes [Chan01] 70.80% 82.05% 0.735 80.43% 61.08% 13060.2 80.31 5.98 0.66

B-splines Snake [Brig00] 76.26% 86.46% 0.809 86.70% 69.28% 8692 34.3 4.20 0.77

Grabcut [Roth04] 83.66% 84.56% 0.806 90.78% 79.68% 6425.6 41.56 7.16 0.77

Felzenszwalb [Felz04] 82.21% 67.78% 0.686 81.80% 58.47% 12474.4 38.6 4.37 0.77

Kurtz [Kurt12] 82.34% 83.56% 0.784 83.39% 67.66% 8942.3 42.1 12.51 0.76

Weber [Webe11] 89.75% 82.69% 0.817 87.63% 78.12% 5641.8 27.19 3.93 0.78

Power Watershed [Coup09] 72.61% 71.27% 0.762 82.35% 57.51% 10523.9 55.26 5.44 0.72

SLIC [Acha12] 83.49% 78.33% 0.808 82.94% 69.76% 6239.8 36.22 6.23 0.76

GAC [Ceru13] 92.67% 85.98% 0.881 91.78% 82.42% 4215.3 15.44 2.39 0.81

between the points. In [Kars12], the vectorial minimum barrier

distance (MBD) was introduced. This method can be used to

compute distance transforms on color images. The cost of a

path π is given by a path-cost function C ( f ,π). Let Π be the

set of all paths between p and q in (Zn,α). The path-cost

distance between p and q is

ρA(p,q) = min
π∈Π

C ( f ,π) . (12)

The minimum barrier distance as defined in [Stra13] is ob-

tained by setting

C ( f ,π) =

(

max
i

[ f (pi)]−min
j
[ f (p j)]

)

. (13)

With the notation ~f = ( f1, f2, f3) for RGB-values, we used the

following path-cost function for color images:

C

(

~f ,π
)

=
m

∑
k=1

max
i, j

∣

∣ fk(pi)− fk(p j)
∣

∣ . (14)

Note that this path-cost function corresponds to the L1 diam-

eter in RGB-space of the points in the path (see [Kars12] for

details).

E. Input stroke

Our study focuses on segmentation methods that can be used

in smartphones applications. Consequently, user interaction

has a significant advantage. Therefore, for methods allowing

it, we propose to add an input stroke, illustrated in Figure

6, allowing the user to locate the leaf in the image and to

initialize process. For GAC and SLIC approaches, this mark

is used to have an a priori knowledge on the local color, and

for other methods, it allows to initialize the determination of

the contour.
IV. RESULTS AND DISCUSSION

Our comparative study is divided into different steps. First

of all, we study the performance obtained by each method

without pre-processing tools. To analyze the possible opti-

mizations, we then present the results obtained with the use of

color distance maps, finally we add user knowledge through

input strokes. We also study the influence of segmentation

approaches (with or without additional processings) for the

description of tree leaves.

Fig. 6: Sample images of tree leaves and their respective input stroke.

A. Initial results

The first results, presented in Table II, show the performance

obtained for each method, without color distance map or

input stroke. From a general point of view, the Guided Active

Contour approach provides the highest scores for all criteria.

More precisely, the average similarity rate (defined by the

Precision, the Recall and the Jaccard index) is increased by

nearly 17.25% on average compared to the other methods. The

quality coefficient (given by the Dice index) is increased by

15.61%. One of these consequences is the improvment of the

robustness to contrast problems. We propose in Figure 7 an

illustration of this problem for three segmentation results.

Fig. 7: Example of contrast problem for three segmentation methods:
(left to right) ground truth, Pyr. MeanShift, Watershed and GAC.

The scores obtained by the GAC method for the Manhattan
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TABLE III: Average Dice index, Manhattan index, Hamming measure, Hausdorff distance, MAD and SSIM of 232 images. Thirteen
segmentation methods are presented, with NO input stroke and WITH color distance map based on global distance and local color.

ref. Precision Recall Dice Manhattan Jaccard Hamming Hausdorff MAD SSIM

Thresholding [Otsu79] 83.29% 90.02% 0.855 89.51% 76.54% 7176.8 48.72 5.87 0.78

MeanShift [Coma02] 78.19% 89.14% 0.816 86.35% 71.56% 9980.1 61.42 5.56 0.72

Pyr. MeanShift [Li10] 81.73% 90.76% 0.846 88.33% 75.29% 8055.5 51.08 5.11 0.78

Graphcut [Boyk01] 75.89% 87.20% 0.79 85.46% 68.34% 10220.2 63.13 6.09 0.69

Watershed [Beuc93] 76.38% 93.67% 0.82 84.93% 72.38% 11624 62.66 5.35 0.76

Snakes [Chan01] 77.73% 93.41% 0.834 87.58% 73.81% 9251.1 63.57 5.24 0.75

B-splines Snake [Brig00] 79.30% 96.85% 0.864 90.42% 77.13% 6432.7 30.9 3.78 0.80

Grabcut [Roth04] 58.99% 97.53% 0.789 83.52% 57.25% 9397.5 50.08 6.80 0.72

Felzenszwalb [Felz04] 86.03% 79.88% 0.793 86.70% 69.31% 8246.2 34.57 3.81 0.79

Kurtz [Kurt12] 85.07% 87.52% 0.851 89.94% 76.74% 6592.9 37.59 10.15 0.82

Weber [Webe11] 93.64% 90.13% 0.918 95.32% 86.82% 4133.8 25.34 3.23 0.85

Power Watershed [Coup09] 81.15% 75.79% 0.814 85.08% 64.83% 7958.9 30.57 4.67 0.78

SLIC [Acha12] 86.25% 83.56% 0.849 85.41% 74.52% 5763.3 34.55 6.10 0.80

GAC [Ceru13] 94.56% 87.47% 0.903 94.06% 83.39% 3780.9 11.56 1.56 0.86

index, the Hausdorff distance and the Hamming measure, are

also higher than those of other approaches. Performances are

improved of: 1.1% (relative to GrabCut) to 16.3% (relative

to Graphcut) for Manhattan index; 43.3% (relative to Weber

approach) and 81.1% (relative to Graphcut) for Hausdorff

distance; and 25.3% (relative to Weber approach) to 70.8%

(relative to Graphcut) for Hamming measure. These three

criteria notably characterize problems of under- and over-

segmentation. The Figure 8 shows the consistency and im-

provement brought by the Guided Active Contour method.

The last two criteria (the MAD and the SSIM) are used to

Fig. 8: Example of over-segmentation problem for three segmentation
methods: (left to right) ground truth, Snakes, MeanShift and GAC.

study respectively the shape of the segmentation based on

the analysis of contour points, and the quantity of informa-

tion extracted relatively to the ground truth. The observation

remains the same, the performance offered by the GAC are

on average higher by almost 61.9% for MAD and 12.2%

for SSIM compared to other methods. Therefore the Guided

Active Contour approach considerably improves the extraction

of tree leaves. Nevertheless, despite improved performance,

this segmentation method has some limitations, as shown

in the Figure 7 and 8 with particular problems of under-

segmentation. In order to overcome these defects we propose

to study the impact of a pre-processing step for defining a

color distance map.

B. Influence of the color distance maps

We presented in a previous article [Gran14] three different

distance maps based on: geodesic distance; an approach of

minimum barrier distance; coupling global distance and local

color, and a preliminary study of their respective influence

on the segmentation methods. It follows that the use of the

tool implemented by Cerutti and al. [Ceru11] significantly

improves the performance of all approaches, as shown in

Figure 10 for B-splines Snakes and Guided Active Contour

approaches for example. Table III presents these results, with

the addition of the four latest methods tested and three

additional criteria.

From a general point of view, one can note that the

performance have been improved, both for the quality of

segmentation (8% average increase for the Dice index), and

for the shape of the segmented area (15% improvement for

the MAD). The problems of under- or over-segmentation were

reduced (respectively by 18% and 21% for the Hamming

measure and the Hausdorff distance). These improvements

lead to the extraction of a more relevant information, which

results in an average increase of 6% of the SSIM.

We also note that the approach proposed by Weber et

al. obtains, on average, higher performances than the GAC

method for few criteria (Dice index for example), as it can be

observed in Figure 9.

Initial image GAC (0.929) Weber (0.827)

Initiale image GAC (0.883) Weber (0.968)

Fig. 9: Segmentation results (and Dice index resulting) obtained for
distance maps based on coupling Global Distance/Local Color, for
Weber and Guided Active Contour approaches.
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Initial image GLC GD MBD

Ground truth B-splines Snakes (Dice index (left to right): 0.829, 0.412, 0.618)

GAC (Dice index (left to right): 0.901, 0.855, 0.820)

Fig. 10: Segmentation results obtained for distance maps based on (left to right) : coupling Global Distance/Local Color, Geodesic Distance,
Minimum Barrier Distance, for B-splines Snakes and Guided Active Contour approaches.

TABLE IV: Average Dice index, Manhattan index, Hamming measure, Hausdorff distance, MAD and SSIM of 232 images. Five segmentation
methods are presented, WITH input stroke and WITH color distance map based on coupling global distance and local color.

ref. Precision Recall Dice Manhattan Jaccard Hamming Hausdorff MAD SSIM

Snakes [Chan01] 86.98% 90.08% 0.876 91.43% 79.59% 6094.2 40.92 5.12 0.81

B-splines Snake [Brig00] 80.11% 96.23% 0.866 90.67% 77.44% 6211.3 29.13 3.45 0.81

Grabcut [Roth04] 63.49% 96.61% 0.715 66.41% 60.79% 20580.4 61.3 6.44 0.62

Weber [Webe11] 94.81% 91.65% 0.925 95.34% 87.27% 2947.5 22.62 2.49 0.86

SLIC [Acha12] 87.39% 84.77% 0.861 87.12% 76.28% 5466.2 29.94 5.72 0.81

GAC [Ceru13] 95.16% 90.79% 0.927 95.45% 86.99% 2872.7 10.82 1.06 0.87

However, the approach developed by Cerutti et al. defines

better the contours of the segmented area (MAD), is less

inconsistency (under- or over-segmentation) and allows us

to extract more precise information (Precision and SSIM).

Concerning the other criteria, the difference appears mainly

from images with lobed leaves. Indeed, we were able to

realize that for those specific cases, the approach of Weber

et al. defines better each lobe. Operating on a smartphone

application, an interaction with the user is possible. Therefore,

in order to overcome the problem of defining some lobed

leaves, we propose to add a second pre-processing tool based

on an input stroke.

C. Influence of the input strokes

This second pre-processing tool enhances the performance

of four of the five methods that use it. Table IV shows a

decrease of scores for Grabcut method, and improvement for

the other approaches. Methods implemented by Weber et al.

and Cerutti et al. get the best performances with an average

increase ranging from 0.8% to 2.6% for the segmentation qual-

ity (Dice index). Regarding the shape of the segmentation and

the information extracted, the improvements are respectively

by 23% (for Weber’s method) to 32% (for GAC) for the MAD

and by 1.2% for the SSIM. We also observe that the input

stroke allows GAC to overcome Weber approach on some

measures. Indeed, this latter has now lower scores for Dice

and Manhattan indices. It nevertheless stays ahead for Recall

and Jaccard index.

The analysis of segmentation results shows that under-

segmentation problems have been reduced, particularly for the

lobed leaves, as shown in Figure 12. We can see that there

are still some imperfections, however the contribution of the

input stroke is undeniable and essential to overcome the under-

segmentation problem.

This tool is still dependent on the user and its visualization

of the tree leaf. Indeed, we can observe in Figure 13 that for

the same initial image, two different input strokes give two

different results. Therefore, the user must ensure that the input

stroke is consistent, so that the result is optimal.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
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Initial image No pre-processing + GLC + Input stroke

Ground truth Grabcut (Dice index (left to right): 0.594, 0.661, 0.723)

GAC (Dice index (left to right): 0.876, 0.911, 0.934)

Fig. 11: Segmentation results obtained after the successive addition to the original image, a color distance map (GLC) and an input stroke,
for Grabcut and Guided Active Contour approaches.

Fig. 12: Examples of (top) shape and under-segmentation problems
and (bottom) improvement by the addition of an input stroke, for
Guided Active Contour.

Throughout Section IV we have shown that the use

of Guided Active Contour method coupled with two pre-

processing tools, allows us to obtain the best overall perfor-

mance for the problem of extracting tree leaves (as shown

in Figure 11). The smartphone application proposed in our

project relies on these segmentation to describe and classify

leaves. We propose to study the impact of this approach on

the description of leaves.

Fig. 13: Examples of initial image with (top) good input stroke /
(bottom) bad input stroke and the resulting segmentation, for Guided
Active Contour.

D. Impact on the description of tree leaves

In our work, the description of a tree leaf is based on

measuring the curvature scale space [Mokh92] (denoted by

CSS) for defining concave and convex contours. The curva-

ture measurement is calculated on the contour by estimating

derivatives with increasing neighborhoods. For the point (x,y),

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
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the curvature at a given scale is defined by:

c(x,y) =
x′ · y′′− y′ · x′′

(x′2 + y′2)
3
2

(15)

The resulting histogram, shown in Figure 14, is used to

describe the shape of the leaf and highlight the number of lobes

(number of lines) and thickness (length of lines). Calculations
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A
v
er

ag
e

C
u

rv
at

u
re

Fig. 14: Examples of description of tree leaf (left) and the resulting
histogram based on measuring the CSS (right). Each line represents
the curvature at a given scale.

relating to CSS are detailed in [Ceru13]. To analyze and

characterize the quality and accuracy of the description, we

propose to rely on the earth mover distance [Rubn98] (denoted

by EMD). This latter is defined by :

EMD(p,q) =
∑m

i=1 ∑n
j=1 Ci j‖pi−q j‖

min(ωp,ωq)
, (16)

where Ci j is the amount of weight of pi matched to q j, and

ωp, ωq are the corresponding weights of the points. This

distance is generally used to evaluate dissimilarity between

two images or two histograms, in our case between ground

truth and segmentation method studied. The results obtained

are shown in Figure 15, thereby summarizing the average

EMD and standard deviation.

Fig. 15: Average earth mover distance and standard deviation ob-
tained by each segmentation method studied (supervised or not).

The study of this graph allows us to highlight the best results

offered by the use of the segmentation from GAC approach,

with a value closer to 0.3 for the EMD and a lower standard

deviation, characterizing a more accurate description.

Figure 16 illustrates the impact of segmentation on the

CSS calculation. We can observe that the right side of CSS

from Felzenswalb approach (second line) is different than the

ground truth (first line). These results confirm the conclusions

Curvilinear abscissa

A
v
er

ag
e

C
u

rv
at

u
re

A
v
er

ag
e

C
u

rv
at

u
re

A
v
er

ag
e

C
u

rv
at

u
re

Fig. 16: (Top to bottom) CSS histograms obtained with ground truth
segmentation, with Felzenszwalb approach and finally with GAC.

set out in the previous section. Indeed, the problem of over-

segmentation for Felzenszwalb’s approach causes a modifica-

tion (shift) of the histogram and therefore a worse description.

This problem is lessened with better segmentation, such as

provided by the GAC method. Currently, there are still some

problematic cases. For example, in Figure 17, we can observe

a GAC segmentation, having a Dice index equal to 0.91. The
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Fig. 17: (Top to bottom) CSS histograms obtained with ground truth
segmentation and with GAC.
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problem lies in the under-segmentation of the central lobe,

which deteriorates the computation of the CSS. Indeed, the

resulting histogram is shifted, or has a different number of

”peaks”, and we obtained an EMD equal to 1.076 (reminder:

average value of the EMD for the GAC is 0.311). We are

currently exploring various possible optimizations to manage

these sensitive cases.

E. Additional results

1) Standard deviation: We demonstrated that the addition

of pre-processing tools can improve the performance of seg-

mentation methods. For supervised approaches (Snakes, B-

splines Snake, Grabcut, Weber and GAC), we propose to study

their stability through the standard deviations obtained for

all observation criteria. For better readability, we present, in

Figure 18, three of the nine criteria studied. We can note that

Fig. 18: Standard deviation for three observations criteria. We focus
on the supervised segmentation methods (with input stroke).

for the observation criteria, the method developed by Cerutti

et al. is the most stable with the lowest standard deviation.

Our second observation concerns the largest deviation obtained

by the MAD measure, which characterizes the shape of the

segmentation. Therefore, future work will focus on optimizing

the definition of contours of the segmented area.

2) Computation time: Tests were performed on laptop

with Intelr i7-3610QM CPU (2.30Ghz), 8Go RAM and the

average size of the images is 450× 800 pixels. In terms of

computation time the guided active contour has a higher cost

than conventional methods. Indeed, these approaches usually

require fast calculation and few or no iteration. Values are

approximately equal to (in seconds): 0.09 for Thresholding,

0.6 for MeanShift, 1.5 for Snakes, 2.4 for Grabcut, 8 for Power

Watershed or also 60 for B-spline Snake. However, in view

of its performance and its use of interactive smartphone, our

method preserves an acceptable computation time around 3.5

seconds per segmentation.

V. DATA SHARING AND WEB INTERFACE

All methods and observation criteria presented in this article

compose our benchmark dedicated to the study and validation

of segmentation approaches. The database proposed for tests

is made up of tree leaves, however, a generalization to other

images is obviously possible. In order to share this benchmark

and make it scalable, we have developed a website (Figure 19),

which is available at: http://liris.univ-lyon2.fr/reves. Various

Fig. 19: Example of our website page dedicated to the analysis,
voting and ranking for all segmentation methods included in our
benchmark. Various display options are available, such as scale
change or readjustment of the segmented region.

options are available to the user: expand the database with

new images, at first limited to tree leaves; analyze, grade

and rank each segmentation method, allowing us to collect

various statistics related to the observations presented in this

article; extract comparative results by selecting only appro-

priate methods; or also propose new observation criteria or

new segmentation approaches. The user can add an executable

in our benchmark, leading to the update of all comparative

statistics.

VI. CONCLUSION

We presented in this paper a comparative study of thirteen

methods of segmentation applied to a problem of extraction of

tree leaves in smartphone images. We firstly highlighted the

performance obtained by the Guided Active Contour approach,

developed in our project by Cerutti et al.. Improving the accu-

racy and quality of segmentation, but with defects (particularly

related to the under-segmentation), we then analyzed the con-

tributions of two pre-processing steps: the use of color distance

maps and the interaction application/user through an input

stroke. This analysis allowed us to highlight the relevance

of the choices made for the distance map (coupling global

distance and local color), and the interest to interact with the

user, both for the GAC method and for all other approaches.

This work is currently underway through the development

of our website, which will provide a scalable benchmark,

dedicated to the analysis and validation of segmentation tools.

This web-based platform will initially focus on the extraction

of tree leaves and then will be generalized to other applications

such as medical imaging, for example.
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